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ABSTRACT 

 

Vortrix Algebra is an improved vector algebra which provides complete and invertible forms of vector 

multiplication and division.  Vortrix Algebra is derived from simple arithmetic which shows that the 

products of even numbers of vectors (even products) result in matrices, odd products result in vectors.  

This disambiguation between vectors and matrices resolves some of the anomalies and ambiguities 

inherent in modern mathematics.  Such resolutions include the first ever vector products which provide for 

non-ambiguous inversion, the first ever non-imaginary solution to the square root of -1 which results in a 

pair of real operators to replaced the single imaginary complex operator (The Geometric Algebra 

definition is shown to be erroneous), powerful vector trigonometric functions such as sine, cosine and 

tangent, the ability to take limits of complex vector expressions providing for full vector calculus (Vortrix 

Calculus) to supplement the present “Partial” vector calculus which is based on partial derivatives.  

 

Although the goal was to provide a more complete set of vector operators to support a more complete 

vector calculus; the development necessary to achieve those goals provided a step toward the unification 

of algebraic systems.  This paper demonstrates that Vortrix Algebra is a superior alternative to all other 

vector algebras including Geometric Algebra and its derivatives.  Secondly, since Vortrix Algebra is 

developed from standard arithmetic algebra, a Vortrix Algebra system of zero dimensions is consistent 

with arithmetic algebra.  Finally, because real solutions are provided for the once “undefined” square root 

of -1, there is no further need for complex algebra or any other algebra requiring imaginary numbers.   The 

benefit of replacing complex algebra with Vortrix Algebra is that engineers need only master one form of 

algebra for all applications.  Furthermore, engineers can use real dimensions instead of imaginary 

dimensions.  Vortrix Algebra should not be considered the final step of algebraic unification as there are 

anomalies of mathematics that still remain. 

This work is a derivative work of Vector Multiplication and Division, Copyright 2014 by 

Robert J. Distinti.  Copyright registration number: TXu 1-954-171. 

 

This paper is a work in progress which has been submitted to Library of Congress for 

Copyright Protection.  Copyright 2018 by Robert J. Distinti. 

 

The incomplete sections of this paper are marked <INCOMPLETE> 

Vortrix Algebra  

http://www.etherealmechanics.com/


 

Copyright © 2018 Robert J Distinti.         Page 2 of 52 

Rev 1.3 
28 June 2018  28 June 2018  

 

 

1 BACKGROUND (PRIOR ART)............................................................................... 4 

1.1 SYMBOLIC AND REAL OPERATORS ......................................................................... 4 
1.2 LEGACY VECTOR ALGEBRA (LA) ........................................................................... 5 
1.3 GEOMETRIC ALGEBRA (GA)................................................................................... 9 

2 DEVELOPMENT OF VORTRIX ALGEBRA IN 2D .......................................... 10 

3 VORTRIX ALGEBRA IN 3D ................................................................................. 16 

4 NOTATIONS, DEFINITIONS AND IDENTITIES ............................................. 18 

4.1 DIMENSIONAL AGGREGATION AND ANNIHILATION .............................................. 18 

4.2 SCALARS AND ZERO PRODUCTS ........................................................................... 20 
4.3 BRACKET NOTATION AND MATRIX DELINEATION ................................................ 20 

4.4 THE VORTRIX DOT AND CROSS PRODUCTS .......................................................... 21 
4.4.1 The Vortrix 2D Dot Product [A•B] ............................................................... 21 
4.4.2 The Vortrix 2D Cross Product [AxB] ........................................................... 21 

4.4.3 Properties of the 2D Vortrix Cross and Dot Products ................................. 22 
4.4.4 Vortrix 3D Dot Product ................................................................................ 22 

4.4.5 Vortrix 3D Cross Product ............................................................................. 22 
4.4.6 Properties of 3D Dot and Cross products .................................................... 22 

4.5 VECTOR TRANSPOSE AND THE MATRIX CONJUGATE [AB]=[BA] ⃰ ........................ 22 

4.6 LEFT AND RIGHT MULTIPLY ................................................................................. 23 
4.7 SQUARE VECTOR SCALAR MATRIX [AA] ............................................................. 24 

4.8 UNITY SCALAR MATRIX ....................................................................................... 24 
4.9 SPLIT MATRIX NOTATION..................................................................................... 24 

4.10 RECIPROCALS AND EQUIVALENTS ..................................................................... 25 
4.11 SCALAR AND UNITY RECIPROCALS ................................................................... 27 

4.12 REFLECTION ...................................................................................................... 28 
4.13 COMMUTATIVE PROPERTIES OF SPLIT SCALARS RECIPROCALS ......................... 28 
4.14 LEFT AND RIGHT VECTOR DIVIDE ..................................................................... 29 

4.15 THE SQUARE ROOT OF -1 (COMPLEX OPERATOR) ............................................. 31 
4.15.1 The Vortrix Plane Rotation Operator (i) ................................................... 31 

4.15.2 The Conjugate Plane Rotation Operator (-i) ............................................ 33 
4.15.3 The Geometric Algebra Complex Operator Fraud ................................... 33 

4.16 PROPERTIES OF THE 2D VORTRIX ...................................................................... 36 

4.16.1 Scalar Magnitude of Matrix ...................................................................... 37 
4.16.2 Rotation Angle ........................................................................................... 37 
4.16.3 Power of Vortrix ........................................................................................ 37 
4.16.4 Trigonometric Properties (revised v1.3) ................................................... 38 

4.16.5 Vortrix Trigonometric Functions (New in V1.3) ....................................... 40 
4.17 EULER’S VORTRIX (2D) .................................................................................... 44 
4.18 LN[AB] ............................................................................................................. 45 
4.19 THE VORTRIX NATURAL EXPONENT E

[AB]
 ......................................................... 45 

4.20 PROPERTIES OF THE 3D VORTRIX ...................................................................... 46 
4.21 ROTATIONS IN 3D.............................................................................................. 47 



 

Copyright © 2018 Robert J Distinti.         Page 3 of 52 

Rev 1.3 
28 June 2018  28 June 2018  

5 APPLICATIONS ...................................................................................................... 47 

5.1 PYTHAGOREAN THEORY ....................................................................................... 47 
5.2 VORTRIX CALCULUS CHAIN RULE ....................................................................... 47 
5.3 THE PRETONIC VECTOR AMPERE FIELD  (REVISED 1.3) ........................................ 48 

6 TBD ............................................................................................................................ 51 

6.1 SUB HEADING ....................................................................................................... 51 

6.1.1 Sub sub heading ............................................................................................ 51 
6.1.2 Second ........................................................................................................... 51 
6.1.3 Third .............................................................................................................. 51 

6.2 SUB TWO ............................................................................................................... 51 
6.3 SUB 3 .................................................................................................................... 51 

6.3.1 Other ............................................................................................................. 51 
6.3.2 ............................................................................................................................ 51 

6.3.3 ............................................................................................................................ 51 
6.3.4 ............................................................................................................................ 51 

6.3.5 ............................................................................................................................ 51 

APPENDIX A. CONSOLIDATED LIST OF IDENTITIES .................................... 51 

APPENDIX B. SOFTWARE SUPPLEMENT .......................................................... 52 

APPENDIX C. IDENTITY VERIFICATION........................................................... 52 

APPENDIX D. ................................................................................................................. 52 

APPENDIX E. ................................................................................................................. 52 

APPENDIX F. ................................................................................................................. 52 

APPENDIX G. ................................................................................................................. 52 

 

  



 

Copyright © 2018 Robert J Distinti.         Page 4 of 52 

Rev 1.3 
28 June 2018  28 June 2018  

1 Background (Prior Art) 
The development of a more complete vector calculus requires a vector algebra with a 

complete and invertible set fundamental operators (addition, subtraction, multiplication 

and division).  These operators are the foundation of all higher order mathematics.  For 

example, they are necessary to compute the limits of any kind of vector expression; 

consequently, vector limits are necessary for Vector Calculus.  This section discusses 

legacy vector systems, including legacy vector algebra (LA) and Geometric Algebra 

(GA) in terms of the completeness of operators 

 

Prior to delving into these systems, it is appropriate to discuss the relationship between 

symbolic and numerical operators first. 

 

There are instances throughout science and engineering where a vector appearing on both 

sides of a derivation are “divided” out and the result is experimentally shown to be sound.  

For example, the following arbitrary expression is given. 

 

KV mB B  (Vectors are identified by bold type)  

 

The expression is reduced by dividing both sides by the vector B as follows 

 

KV m  

 

This division is both symbolic and trivial.  It is symbolic because real values are not 

actually being divided using a real numerical operator; rather, the division is Symbolic.  It 

is trivial because it is obvious that anything divided by itself results in unity.  This would 

be true even if the corresponding real operator did not exist.  This is an example of the 

divergence between symbolic and real operators. 

 

Next consider resolving the following: 

 

( )
?

AB

B
 

 

Symbolically the answer should be A; however, substituting real values for A and B 

produces a numeric result which does not contain enough information to non-

ambiguously divide by B.  Thus there is no real divide operator to support the symbolic 

divide and the existing numerical operator is insufficient to support the symbolic 

multiply.  This shortcoming is exposed in the next section.  In contrast, the symbolic 

expression contains sufficient information about the contents of the numerator to allow 

trivial symbolic division by B.  This shows a clear divergence between symbolic and real 

operators. 
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Finally consider  

 

( )
?

AB

C
 

 

Since there are no trivial symbolic reductions available, the above expression can only be 

reduced by real operators which involve real values for A, B and C and the expression 

solved with real numerical multiply and divided which result in a real output.   Prior Art 

shows no suitable vector system which provides a real vector divide, nor a complete 

vector multiply that retains sufficient information to support inversion. 

 

The divergence between Symbolic and Real operators must be resolved.  The following 

sections explore the divergence of popular legacy vector algebraic systems.    

 

 

 

The term Legacy Vector Algebra (LA) is the term used in this work to describe the 

standard vector algebra that engineers are familiar with which was developed by 

Heaviside.  The purpose of embellishing it with “Legacy” is to distinguish it from the 

generic term vector algebra.  

 

Consider two vectors written in algebraic format  

 

AyAx A  

ByBx B  

 

In the above, the values Ax and Bx represent quantities of length in the x directions, 

while Ay and By represent quantities of length in the y direction.   

 

Before continuing, it is time to introduce definitions that are used in the remainder of this 

work.  A vector, by standard definition, has both magnitude and direction.  Sometimes it 

is desired to isolate the magnitude and direction of a vector for various reasons.  The first 

definition is the magnitude of a vector which is defined as follows  

 

( )mag BxBx ByBy  B B   The magnitude of a vector  

 

In the above, the left two forms are the symbolic representations while the form on the 

right is the real or numerical construct.  As in legacy systems, the magnitude of a vector 

is a scalar quantity. 

 

The second definition is the direction of a vector (direction vector for short) which is 

defined as follows  
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ˆ ( )
Bx By

dir
BxBx ByBy


   



B
B B B

B
 

 

In the above, the left four forms are the acceptable symbolic representations and the right 

most expression is the real or numerical construct. 

 

The direction vector is a vector of unit length (length =1) which points in the same 

direction as the original vector.  It is sometimes called a unit vector or a unit direction 

vector. 

 

A vector can be reconstituted by multiplying the magnitude and direction vector:  
ˆ ( ) ( )mag dir  B B B B B B B  

 

Now that the initial definitions are out of the way, it is time to resume the exploration of 

legacy vector products.   

 

The product of vectors A and B is essentially the multiplication of the components for 

Vectors A and B which results in the following. 

 

AyByAyBxAxByAxBx AB  

 

The outer two terms are identical to the legacy Dot product and rewritten as  

 

AyBxAxBy  BAAB  

 

The legacy Dot product is defined by the following expression where theta (θ) is the 

angle between vectors A and B (angleAB). 

 

| || | Cos A B A B  

 

The remaining two terms look almost like the traditional cross product which is defined 

for 2 Dimensional (2D) vectors as: 

 

 nBA ˆAyBxAxBy      ˆ| || | Sin A B A B n  

 

Where the magnitude of the cross product is the area of the parallelogram formed by 

vectors A and B. 

 

There are three problems with this definition. 

 

The first problem is the minus sign which is inconsistent with the arithmetic result.  It is 

certain that somewhere in the history of the development of vector algebra it was decided 

that multiplying an X component by a Y component yields a positive result, while 

multiplying a Y component by an X component yields a negative result.  Although this 

choice may be completely arbitrary, it is a very useful mathematical construct.  It allows 
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cross products to be zero when vectors A and B are parallel.  The ramification of this 

choice being that vector algebra is no longer commutative; rather it is anti-commutative 

which means AxB =-BxA. This choice eliminates the possibility of using arithmetic 

division to provide an inverse process.  For the remainder of this paper this is referred to 

as the cross product sign convention.  The development of Vortrix Algebra arrives at an 

anti-commutative cross product convention which is similar to the legacy version. 

 

A second problem is the structure of the cross product result.  The result is a vector that is 

normal to the input vectors A and B.  In 2-dimensional (2D) space, there is no definition 

of a 3
rd

 dimension and so this practice requires an imaginary construct.  It is the intent of 

this work to eliminate all imaginary constructs and replace with real constructs.  

Furthermore, for 4D or higher dimensional systems, every other dimension is orthogonal 

to the plane formed by the dimensions X and Y (XY plane) and so trying to define a 

normal to an XY plane is completely ambiguous.   For cross products in 3D systems it is 

just coincidence that there is only one orthogonal dimension to each pair of dimensions; 

therefore, only in a 3D system are cross product “normals” valid.  Although this system 

has great utility, it is problematic for systems other than 3D. 

 

A third problem with the traditional cross product is the units.  The cross components 

AxBy and AyBx have the units of area which is inconsistent with the definition of the 

cross product which results in a vector of length.  To be fair, the definition claims that the 

length of the vector is equal to the area.  To define area in terms of length may be a 

useful, but sloppy, work-around in the engineering field; however, to the rigorous field of 

mathematics, this transgression should have been resolved generations ago. 

 

In any event the legacy vector product is written as  

 

ˆ| || | (Cos Sin )      AB A B A B A B n  

 

To demonstrate that the legacy product does not provide sufficient information to invert 

the product of A and B, consider the product AB with vector A=(4,3) and vector B=(7,2), 

thus: 

 

ˆ34 13     AB A B A B n  

 

The challenge is to divide (4,3) into 34-13n to result in (7,2) without any prior knowledge 

that the divisor is contained in the dividend.  To reduce this logically, the 34 is from the 

dot product which is defined as follows  

 

cos( ) A B A B  

 

The normal results from the cross product which is   

 

ˆsin( ) A B A B n  
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The simplest thing that can be done at this time is to divide by the magnitude of (4,3)  

 

2 2

ˆ ˆcos( ) sin( ) 34 13

4 3

   



A B A B n n
 

 

Using R to represent the result since there is no foreknowledge of the components of the 

original product, results in  

 

ˆ ˆcos( ) sin( ) 6.8 2.6angleR angleR  R R n n  

 

The value angleR is determined from   

 

sin( ) 2.6
tan( )

cos( ) 6.8

angleR
angleR

angleR


 

R

R
 

 

1 2.6
20.9245deg tan ( )

6.8

 
   

 

Then logically the magnitude of the result R is   

 

6.8
7.28

cos( 20.9245)
 


R  

 

Checking this with the other  

 

2.6
7.28

sin( 20.9245)


 


R  

 

It is clear that the length of the quotient is 7.28.  The next step is to determine the 

direction of the quotient; this is the crux of the problem.  The direction of the quotient is 

either the sum of, or the difference between, the angle of the divisor and the angle -

20.9245 degrees.  If the algorithm had foreknowledge that the divisor is the left or right 

factor of the dividend, then the choice of direction is simple.  From a symbolic 

standpoint, it is easy to show that (AB)/B results in the vector A because the symbolic 

expression contains complete information of the original components of the dividend.  

This highlights the loss of information inherent in the Legacy Product. 

 

The above ambiguity is analogous to the answer of the sqrt(4) which could either be 2 or 

-2 depending if the 4 was the product of -2,-2 or 2,2 or something else.  Again, it would 

require foreknowledge or some other form of information passed along that would be 

sufficient to non-ambiguously invert the function.  

 

Further, consider the non-trivial case of (AB)/C.  As before, determining the magnitude 

of the quotient is easy; however, the direction of the quotient is again ambiguous.  The 
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direction of the quotient is either the direction of C + 20.9245 degrees or the direction of 

C – 20.9245 degrees.  Because of the arbitrary nature of this case, foreknowledge is of no 

value.  

 

Vortrix algebra develops a more robust vector product which supports a non ambiguous 

divide. 

Geometric Algebra (GA) is an alternative vector algebra which defines a vector product 

as  

 

   AB A B A B  
 

This is called the Geometric Product where the dot product is identical to the dot product 

of LA and is either referred to as the dot product or the inner product.  The second term 

(A^B) is either referred to as the outer product or exterior product depending on author.  

For the remainder of this work, the term exterior product is used.  The definition of 

exterior product from Wikipedia reads  

 

“The exterior product of two vectors can be identified with the signed area enclosed by a 

parallelogram the sides of which are the vectors.”  

 

It is well known that any two vectors (that are not parallel) form the sides of a 

parallelogram; so where is the product?   

 

If the input to the exterior product is a pair of vectors that form the sides of a 

parallelogram and the result of the exterior product is a pair of vectors that form the sides 

of a parallelogram then what was done? 

 

Thus, GA solves the loss of information problem by performing no product at all.  By 

simply retaining the input vectors intact has traded a real operation for a symbolic 

operation.  The symbolic nature of the exterior product is demonstrated by the form of the 

exterior product which is called a “Bivector”. A Bivector is just a container to hold the 

two input vectors.  From an engineer’s perspective, this is not a product; rather, it’s an 

I.O.U. for a product.   

 

The advantage is that the product of AB now retains full information about the original 

products allowing the trivial expression (AB)/B=A to be resolve unambiguously.  This 

resolution is symbolic in nature because the exterior product is no more of a real product 

than LA; as such, it is still not possible to resolve the expression (AB)/C with real values.   

 

From the perspective of a real numerical operator (where actual values are multiplied), 

the GA product is actually less of a real product than the LA product.  To demonstrate 

this, consider that both LA and GA use the LA Dot product and Cross product; except 

that, GA jettisons the LA cross product vector, retaining only its magnitude to quantify 
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the area of the parallelogram for the exterior product.   The shortcomings of the GA 

exterior product are demonstrated in section 4.15.3. 

2 Development of Vortrix Algebra in 
2D 

In order to develop a complete set of vector products (multiplication and division), it is 

best to begin by determining what is needed from the completely missing operator: 

Division.  By examining arithmetic division, the properties and functionality are 

extrapolated to those desired for vector division.  

 

Arithmetic division is essentially a ratio of two values which serves three fundamental 

purposes.  First, it forms the inverse to multiplication.  Secondly, it is useful to apportion 

things; for example, if we have 50 apples and 9 buckets, then we could put 5 apples in 

each bucket with 5 apples left over.  Lastly, it provides a ratio that allows us to scale 

other values.  For example, if an existing home of 3000 square feet cost $300,000 to 

build, and the architect is asked to give a “ball park” estimate for a 4000 square foot 

structure, he could simply scale the price using a ratio; that is  4000/3000*300,000 = 

$400,000.    

 

The ability to scale something by a ratio requires general forms of both division and 

multiplication and is therefore the least trivial of the three applications.  By studying the 

least trivial application of the most complex operator should yield the most complete 

understanding of what a vector product should be. 

 

In arithmetic, the ratio of B/A represents a value that can scale another value by the 

proportion of B to A.  If B is twice as large as A, then B/A represents a “transmutor” that 

will double anything that it is multiplied against; consequently, it will transmute A to B 

{B= (B/A) A}.  The real question is, what does this transmutor look like if A and B are 

vectors?  Extrapolating the arithmetic case, the ratio of vectors B/A must be able to 

transmute A to B (A(B/A)= B).  Logically, the ratio B/A must be a construct that can 

both scale and rotate a vector multiplied against it.  Presently, the only means by which 

vectors can be both scaled and rotated is with matrices.  This is the first hint that vector 

products (a term used henceforth to include both vector multiplication and division) may 

result in matrices rather than the traditional forms found in legacy systems.  

 

Since it has been reasoned that the product of two vectors must be able to rotate and scale 

a third vector, it is imperative to explore the means by which a product of two vectors 

could produce rotation and scaling.  In this early stage, it is not yet known how vector 

products can produce rotation; however, vectors can be scaled with a scalar and there 

already exists a vector product that results in a scalar.  This is where we begin. 

 

From the LA product, the product of two parallel vectors results in a scalar which is 

primarily due to the LA dot product.  The simplest form of parallel product is the product 

of a vector multiplied by itself (the square vector).  
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22 || AAAA   

 

This definition is sufficient as “Stepping-Stone” to enable the development of Vortrix 

Algebra.  A more complete definition of the square vector is realized as Vortrix Algebra 

is developed further.    

 

In order to develop a complete multiplication and division, an expression is considered 

were a multiplication is inverted with division.  Given the multiplication of vectors A and 

B, B must be recovered when dividing the result of the multiplication by A.  Expressing 

this concept algebraically gives: 

 

A

AB
B   

 

Multiplying top and bottom of the right hand side (RHS) by vector A, then applying the 

definition of the square vector yields:  

 

 
2

A

AAB
B   

 

Since the denominator results in a scalar, the exploration of vector multiplication and 

division reduces to understanding the triple vector product (AB)A.  To avoid trivial 

results, the more general triple product (AB)C is considered instead. 

Expanding for the 2 dimensional (2D) case yields the following terms: 

 

(AxBx)Cx  

(AxBx)Cy  

(AxBy)Cx 

 (AxBy)Cy 

 (AyBx)Cx 

 (AyBx)Cy 

 (AyBy)Cx 

 (AyBy)Cy 

 

Since these terms must resolve to a vector in the original space (X,Y), a means is required 

to determine what each term resolves to.  The magnitude of each term is simply the 

arithmetic multiplication of the three factors.  The question is: what dimension (X or Y) 

does the product of these results couple to?  The answer is inferred from the original 

triple product B=(AB)A.   Speaking only in terms of direction, in order to obtain a result 

in the direction of B, the product (AB) must apply a rotation to the vector A (input 

vector) which would rotate it from A to B.  Thus any vector multiplied by AB will be 

rotated by the same amount which works out to the direction of B minus the direction of 

A.   This is expressed arithmetically as: 
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 ˆ ˆˆ ˆ ( )    B AB A B A A B  

 

This determines the output dimensions for some of the terms  

 

(AxBx)Cx :  x (zero rotation)  

(AxBx)Cy :  y (zero rotation)  

(AxBy)Cx : y   (rotate Cx from x to y) 

(AxBy)Cy : ? 

(AyBx)Cx : ? 

(AyBx)Cy : x (Rotate Cy from y to x)  

(AyBy)Cx :x (zero rotation)  

(AyBy)Cy :y (zero rotation)  

 

For the remaining two terms, it is required to understand the result that occurs when the 

product AB is transposed to BA such that  

 

 AAB ˆˆˆ?   

 

The transposition of AB negates the direction of the applied rotation which is shown 

arithmetically as: 

 

ˆ ˆˆ( , ) (( ) )reflect dir    B A (BA)A A B A  

 

The resultant output direction is the reflection of B about A. Essentially the angle from B 

to A is added to the direction of A to produce a result which looks like B being reflected 

about A.  This is shown in Figure 1. 

 
 

A special case of reflection looks like negation, this occurs when the components A and 

B are perpendicular.  For example, if A is along X (0 degrees) and B is along Y (90 

degrees) then B reflected about A appears as simple negation of B.   

Figure 1: Reflection of B about A 

A 

B 

45 45 

Reflected  
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Expressing this special case arithmetically 

 

ˆ ˆˆ ˆ ( ) for only        B (BA)A A B A B A B  

 

From this, the remaining output dimensions are determined.  The completed list is:  

 

(AxBx)Cx :  x 

(AxBx)Cy :  y 

(AxBy)Cx : y 

(AxBy)Cy : -x  (Rotate Cy by 90 degrees (Ax to By = +90 rotation) y+90 =-x 

(AyBx)Cx : -y  (Rotate Cx by -90 degrees (Ay to Bx = -90 rotation) x-90 = -y 

(AyBx)Cy : x 

(AyBy)Cx :x 

(AyBy)Cy :y 

 

With a little bit of rearranging, it is quickly noted that the resulting terms form a matrix   

 























Cy

Cx

AyByAxBxAyBxAxBy

AxByAyBxAyByAxBx
CAB)(  

 

Finally, by dropping the input vector (C), the proper result of the multiplication of 

Vectors A and B is revealed as a matrix.   

 















AyByAxBxAyBxAxBy

AxByAyBxAyByAxBx
AB  

 

This result is consistent with the introduction which surmised that the products of two 

vectors cannot possibly exist in vector space.  It is also interesting to note that a triple 

product was required to understand the true nature of a double product.  It is important to 

Figure 2: Reflection that Looks Like Negation 

A 

B 

-90 

90 

Reflected  
-B 
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note that there are twice as many terms resulting from this approach than occurred from 

the legacy investigation. 

 

From the above products, a pattern emerges which suggests that double vector products 

(double products) result in a matrix and triple vector products (triple products) result in a 

vector.  Consequently, odd products are vectors, even products are matrices. 

To verify the completeness of this product, divide by A to see if B can be recovered. 

 

   
2

A

AAB

A

AB
B   















AyByAyAxBxAyAyBxAxAxByAx

AxByAyAyBxAyAyByAxAxBxAx
2

1

A
 

 















AyByAyAxByAx

AyBxAyAxBxAx
2

1

A
 

 

Then  
 















)(

)(1
2 AyAyAxAxBy

AyAyAxAxBx

A
 

 

Which is the same as  
 
















2

2

2

1

A

A

A By

Bx
 

 

B









By

Bx
 

 

Thus  
 

 
B

A

AB
    

 

The next task is then to divide by B to recover A.  Applying the same logic yields 

 

   
2

( , )reflect 
AB AB B

A A B
B B

 

 

The above does not result in A.  The result is a vector with the magnitude of A with the 

direction of A reflected about B.  This results from the Cross Product sign convention 

that was developed.  This convention eliminates the commutative property of 
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multiplication and division making products left and right sensitive as well as order 

sensitive.   

 

In order to recover A, the direction of the applied rotation from (AB) must be reversed.  

This is accomplished by transposing AB to arrive at: 

 

 
2

B

BBA
A   

 

This is also accomplished by multiplying B from the left which follows:  

 

 
2

B

ABB
A   

 

Because it is possible to multiply from the left or the right, it is also possible to divide 

from the left or the right.  Furthermore, since it is possible to substitute division with an 

equivalent operation synthesized with multiplication.  The question becomes, is right 

divide substituted with a left multiply or a right multiply?  It turns out that equivalents are 

“opposite side” which means that the equivalent of left divide is synthesized using right 

multiply etc.  This is demonstrated in the following.  

 

Right division is represented by the symbol “/”.  Right division by B can be substituted 

with a left multiply by B and dividing by B^2. 

 

 
 

2
/ 

B AB
A AB B

B
 

 

Left Division is represented by the “\” symbols and its equivalent is Right Multiplication 

with a division by the square as shown in the following: 

 

 
 

2
\ 

AB A
B A AB

A
 

 

Note: for the accompanying C# software tools, the right and left multiply operator is “*” 

while the right divide operator is “/” and the left divide operator is “%”.  The above 

expression is coded as A%(A*B) while the previous is (A*B)/B. 

 

The property of right or left is here forward referred to as handedness.  Again, the 

operator ‘/’ is used to denote right division while the operator ‘\’ denotes left division (% 

in the software).   Right and left multiplication is inferred from which side the factor is 

on.  The term AB can either be viewed as A left multiplied to B, or B right multiplied to 

A.  The relationship between right and left operators is covered in more detail in a later 

section. 
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This solution for vector products represents the most complete form of vector 

multiplication and division to date.  It unifies vectors, matrices, rotors and scalars into a 

coherent system suitable for modeling fluidic rotations (vortices).  The name Vortrix is a 

contraction of Vortex and Matrix.  

 

Because the solution demonstrates that matrices result from even vector products and 

vectors are the result of odd products, the widely held practice of considering vectors as 

simply just matrices of a single row, or column, is erroneous in spite of its usefulness.   

 

This 2 dimensional result represents only the beginning.  More phenomena are 

encountered as each system of higher dimension is explored.  

 

3 Vortrix Algebra in 3D 
Performing a triple product of 3 dimensional vectors 

(Ax+Ay+Az)(Bx+By+Bz)(Cx+Cy+Cz) results in the following 3x3 matrix: 

 

  
























AzBzAyByAxBxByAzAyBzBxAzAxBz

ByAzAyBzAzBzAyByAxBxBxAyAxBy

BxAzAxBzBxAyAxByAzBzAyByAxBx

AB  

 

With additional “left-over” products that do not fit into the 3x3 Matrix shown below 

 

(AyBz-AzBy)Cx    

(AzBx-AxBz)Cy 

(AxBy-AyBx)Cz 

 

What are these extra products?  Where do they go?  How are they handled?  These 

questions are not answered by any classical system.  Since these extra components are the 

multiplication of three orthogonal dimensions (AxBy)Cz it is realized that they are 

volume terms.  Because they are odd products, their proper disposition is vector space. 

This means that in order to support 3 dimensional (3D) products, 3D vectors must be 

upgraded to accommodate 3 dimensions of length and one dimension of volume.  The 

volume dimension would be defined as dimension xyz and the vector would be written 

arithmetically as  

 

Ax Ay Az Axyz   A  

 

A four dimensional (4D) vector would have 4 lengths and 4 volumes and would be 

written arithmetically as  

 

Ax Ay Az Aw Axyz Axyw Axzw Ayzw       A  
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Vortrix Algebra in 4D or higher is a later release and will not be discussed here further. 

Returning to the 3D system, the Axyz term is replaced by Av (v for volume) for the 

purpose of brevity. 

 

Ax Ay Az Av   A  

 

The inclusion of the volume term means that 3D vector products result in 4x4 matrices. 

Performing a triple product of the improved 3D vectors  

(Ax+Ay+Az+Av)(Bx+By+Bz+Bv)(Cx+Cy+Cz+Cv) results in the following [AB] 

matrix: 

 

 





















AvBv+AzBz+AyBy+AxBx+AvBz-AzBv+AyBx-AxBy+AvBy-AzBx+AyBv+AxBz-AvBx-AzBy-AyBz+AxBv+

AvBz+AzBv-AyBx+AxBy-AvBv+AzBz+AyBy+AxBx+AvBx-AzBy-AyBz+AxBv+AvBy+AzBx-AyBv-AxBz+

AvBy+AzBx-AyBv-AxBz+AvBx+AzBy+AyBz-AxBv-AvBv+AzBz+AyBy+AxBx+AvBz-AzBv+AyBx-AxBy+

AvBx+AzBy+AyBz-AxBv-AvBy-AzBx+AyBv+AxBz-AvBz+AzBv-AyBx+AxBy-AvBv+AzBz+AyBy+AxBx+

AB

 

 

For the purpose of computational efficiency, it is observed that the [AB] matrix resulting 

from an improved vector multiply can be represented by the terms in the first column.  

Each of the first column terms are represented by a label (M0 through M3 respectively).  

This means that an AB matrix can be stored in the same amount of space as an improved 

vector. 

 

 

M0 +AxBx+AyBy+AzBz+AvBv

M1 +AxBy-AyBx+AzBv-AvBz

M2 +AxBz-AyBv-AzBx+AvBy

M3 +AxBv+AyBz-AzBy-AvBx

 
 


 
 
 

 

AB  

 

The above 4 terms are expanded for matrix operations using the following template  

 

 

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

M M M M

M M M M

M M M M

M M M M

   
 


 
 
 

 

AB
 

 

 

Note: As of this writing the behavior of the 3D system is not quite as expected.  There is 

no evidence that it is wrong.  It is more likely the case that my preconceptions were 

misguided.  In fact, exhaustive numerical testing shows that all operations are fully 

invertible without loss of information or resulting in ambiguity.  Furthermore, all 

identities which are shown in the following pages are exhaustively tested using the 3D 

system and all behave as expected.  This note is added to keep the interested reader sharp 

to the possibility of error such that they can be identified and corrected ASAP so we can 

get on with the larger task at hand with the best possible tools. 
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4 Notations, Definitions and Identities 
The following Notations, definitions and Identities apply to Vortrix System of all 

dimensions unless otherwise stated. 

In the arithmetic derivation of Vortrix algebra, it is observed that the multiplication of 

two vectors results in terms that are similar to the classical Dot Product and Cross 

Product.  The “dot” terms are scalar and the “cross” terms having dimensions of either 

area or rotation depending upon context.  From this observation it is concluded that the 

multiplication of parallel components Ax and Bx result in a value AxBx that is 

dimensionless.  This dimensional annihilation is the same outcome that would be 

expected if Ax were divided by Bx.  Conversely, if component Ax were multiplied by 

By, the result AxBy would have the units of area in the plane formed by X and Y.  The 

terms Dimensional Aggregation is used to describe the result of a product of two 

dimensions which combine to form an aggregate of the dimensions (such as area).  The 

term Dimensional Annihilation is used to describe the result of a product which has fewer 

dimensions than the input factors. 

 

Because of Dimensional Aggregation and Annihilation, vector products produce a 

plurality of strange inter-dimensional results.  These results are also called products; they 

are the product (results) of products.  To disambiguate the term product, which refers to 

multiplication and division, from the term product which refers to the result of 

multiplication or division, the products which are the result of products are assigned a 

number.  For example, the terms Ax and By are multiplied resulting in the 2-Dimensional 

term AxBy, this is called a 2
nd

 product. The product AxBx is a Zero product because it is 

dimensionless. 



 

Copyright © 2018 Robert J Distinti.         Page 19 of 52 

Rev 1.3 
28 June 2018  28 June 2018  

 
 

 

 

Zero Products are Dimensionless Scalar terms which either begin life as Scalars or are 

reduced to Scalars by Dimensional Annihilation.  Zero products can only exist in the 

main diagonal of a matrix.  Note: Vortrix Algebra “refines” the term Scalar in the next 

section 

 

1
st
 Products (linears) are 1-dimensional terms such as Ax or AxByCx (Ax and Cx 

annihilate).   1
st
 Products either begin life as a value in a vector or are produced by 

annihilation. 1
st
 product terms can only exists in the linear section of vectors. 

2
nd

 Products (rotors and flators) are 2-dimensional terms (AxBy) typically resulting from 

the product of two vectors (Double product) but can also be formed from annihilation of 

higher products.  2
nd

 Products are also called cross dimensional components (cross 

components or cross terms for short) and exist off the main diagonal of the matrix.  There 

are two types of 2
nd

 Products called rotors and flators.  Rotors exist in the linear section 

of the matrix and their principle function is to rotate the vector linears to other 

dimensions.  Flators either inflate or deflate volumes.  Flators are found in the Flator 

(green) sections of the matrix.  The flators in the right column deflate volumes to linears.  

The flators in the bottom row inflate linears into volumes.  It is important to highlight that 

in 3D systems there are only 3 unique second products.  These 2
nd

 products are each 

repeated 4 times (as positive or negative) to become rotors or flators depending on the 

location in the matrix. Volume terms represent spatial volumes and exist only in the 

volume section of a vector.  Volume Terms only exists in systems of 3-Dimensions and 

above 

 

The 3D product yields a matrix with only 4 unique terms which might appear that 

something was lost; except, that each term is used 4 times in the matrix where the 

position in the matrix assigns a different “role”.  This demonstrates how the form of the 

result provides information beyond the scope of the simple one dimensional arithmetic 

operator from which it was developed.   It is this type of information that is lost in legacy 

vector algebras because of improper or incomplete forms. 
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In Vortrix algebra, scalars can only exist in the main diagonal of a matrix because the 

main diagonal of a matrix is the only place that can hold “dimensionless” numbers which 

are alternatively referred to as zero products.  A zero product either begins life as a scalar 

or is produced from annihilation of higher products.   

 

Note: This is the delineation point for the use of the word scalar, prior to this point the 

word scalar is used in the classical sense.  From here forward the Vortrix definition of 

scalar is used. 

 

An example of the proper representation of the scalar pi is: 

 

0

0





 
 
 

 

 

In classical mathematical language, the above structure is called a “Scalar Matrix”. In 

Vortrix Algebra, a scalar can ONLY exists as a Scalar Matrix and so the term is 

redundant.  Any of the following representations of a scalar matrix are allowed  

 

 
0

0


 



 
  

 
 

 

 
5 0

5 5
0 5

 
  

 
 

 

In future text, the term “Scalar Matrix” is sometimes used to remind the reader that a 

scalar is a matrix; however, the terms Scalar Matrix and Scalar are considered the same 

thing from here forward. 

 

Because scalar matrices are left/right insensitive they are fully commutative.  This 

property is heavily exploited in later sections of this paper 

 

To highlight a matrix in Vortrix Algebra, the elements that form a matrix are enclosed by 

square brackets as shown in the following examples  

 

 
   CABCAB

ABAB




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The reason for the delineation is that matrices and vectors each have unique operators.  

An example is the matrix conjugate which is not available to vectors.  

 

The matrix formed from the product of two vectors can be separated into two 

components.  The components are the Vortrix Dot Product and the Vortrix Cross Product; 

both of which are supersets of the legacy vector products.  The Vortrix Matrix is the sum 

of Cross and Dot products as shown  

 

     BABAAB   

 

444...444...111   TTThhheee   VVVooorrrtttrrriiixxx   222DDD   DDDooottt   PPPrrroooddduuucccttt   [[[AAA•••BBB]]]   

 

The Vortrix Dot Product for 2D and 3D systems are represented in the following 

diagrams.  The 3D representation shows the Vortrix dot product in terms of the legacy 

Dot product in order to give perspective of how the old and the new relate: 

 

  













BA

BA
BA

0

0
  (for 2D only) 

 

 
0

0

AxBx AyBy

AxBx AyBy

 
   

 
A B  (2D, 3D {with Z=0 v=0 for A and B}) 

 

 

 

 

444...444...222   TTThhheee   VVVooorrrtttrrriiixxx   222DDD   CCCrrrooossssss   PPPrrroooddduuucccttt   [[[AAAxxxBBB]]]      

The following are the Vortrix Algebra cross products for 2D and 3D systems.  The 2D 

Vortrix Cross Product is represented in terms of the legacy cross product for the same 

reason stated for the 3D dot product.  The purpose of the dot product inside the bracket of 

the 2D cross product is to remove the normal and preserve the proper sign of the legacy 

cross product.  

 

 
ˆ0 ( )

ˆ ˆ ˆ
ˆ( ) 0

where
  

    
  

B A z
A B z x y

A B z
  (for 2D only) 

 

 
0

0

AyBx AxBy

AxBy AyBx

 
   

 
A B (2D, 3D {with Z=0 v=0 for A and B}) 
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444...444...333   PPPrrrooopppeeerrrtttiiieeesss   ooofff   ttthhheee   222DDD   VVVooorrrtttrrriiixxx   CCCrrrooossssss   aaannnddd   DDDooottt   PPPrrroooddduuuccctttsss      
 

 

444...444...444   VVVooorrrtttrrriiixxx   333DDD   DDDooottt   PPPrrroooddduuucccttt   

<UNFINISHED> 

 

+AxBx+AyBy+AzBz+AvBv 0 0 0

0 +AxBx+AyBy+AzBz+AvBv 0 0

0 0 +AxBx+AyBy+AzBz+AvBv 0

0 0 0 +AxBx+AyBy+AzBz+AvBv

 
 
  
 
 
 

A B

 

 

 

  [M0= +AxBx+AyBy+AzBz+AvBv] A B  (Short hand for 3D) 

 

444...444...555   VVVooorrrtttrrriiixxx   333DDD   CCCrrrooossssss   PPPrrroooddduuucccttt      

<UNFINISHED> 

 

 

 

0 -AxBy+AyBx-AzBv+AvBz -AxBz+AyBv+AzBx-AvBy -AxBv-AyBz+AzBy+AvBx

+AxBy-AyBx+AzBv-AvBz 0 -AxBv-AyBz+AzBy+AvBx +AxBz-AyBv-AzBx+AvBy

+AxBz-AyBv-AzBx+AvBy +AxBv+AyBz-AzBy-AvBx 0 -AxBy+AyBx-AzBv+AvBz

+AxBv+AyBz-Az

 A B

By-AvBx -AxBz+AyBv+AzBx-AvBy +AxBy-AyBx+AzBv-AvBz 0

 
 
 
 
 
 

 

 

M0 0

M1 +AxBy-AyBx+AzBv-AvBz

M2 +AxBz-AyBv-AzBx+AvBy

M3 +AxBv+AyBz-AzBy-AvBx

 
 


  
 
 

 

A B     (Short hand 

 

444...444...666   PPPrrrooopppeeerrrtttiiieeesss   ooofff   333DDD   DDDooottt   aaannnddd   CCCrrrooossssss   ppprrroooddduuuccctttsss      

<UNFINISHED> 

 

 

Transposing the vectors of a vector multiply inverts the direction of matrix rotation.  This 

is called Vector Transpose and is demonstrated by the following:  
 

         BABAABABBA   
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The end result of vector transpose is the negation of the rotational (Cross) components.  

This result is consistent with classical vector products where transposing vectors negates 

the cross product but does not affect the dot product.  

 

The next step is to define an operator which only negates the cross dimensional products 

of a matrix.  Because this operation is similar to the complex conjugate of complex 

arithmetic it is therefore dubbed the matrix conjugate and defined as follows  

 

       BABAABBA 
*

  The Matrix Conjugate or Vector Transpose 

 

It is very important to highlight that there is no conjugation for odd products (vectors); 

only even products can be conjugated.   This separates Vortrix algebra from complex or 

quaternion algebra, where conjugation can be applied to even or odd products because in 

those systems, the results of products are always the same construct as the factors.  A 

further distinction between Vortrix and complex algebra is that in complex algebra, the 

transposition of the factors does not affect the result of a complex multiply  

 

(A+jB)(C+jD)= (C+jD) (A+jB). 

 

An astute reader will notice that the conjugation of the matrix arrives at the same result as 

matrix transpose.  It is not proper to assume that identical results prove the operations are 

analogous.  This would be the same thing as stating that multiplication and addition are 

analogous because 2*2 and 2+2 arrive at the same result. 

 

   TABBA   Usage is discouraged 

 

Although matrix transpose and vector transpose use the word “transpose,” it is enticing to 

consider that matrix transpose and vector transpose are analogous operations; however, 

these are just coincidences.  The proper analogous operation to vector transpose is matrix 

conjugate and the use of matrix transpose is discouraged. 

Because multiplication in Vortrix Algebra is not commutative, it becomes important to 

understand what happens when matrix [AB] is multiplied by vector C on the right or left.  

A right multiply occurs when vector C is juxtaposed on the right side of matrix [AB], 

resulting in [AB]C.  A left multiply is defined when C appears at the left, resulting in 

C[AB].   Right multiply [AB]C is already understood.   Using two transpositions, a left 

multiply is converted into a right multiply as shown.  

 

     CBABACABC 
*

 

 

In the first step shown above, the [AB] matrix is conjugated and the vectors are 

transposed which are operations that cancel each other out.  In the second step, C is 
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transposed and the conjugate is dropped which also cancel out.  By comparing right and 

left multiply   

 

   BACCAB   

 

The above is important because it shows that a left multiply can be replaced by an 

equivalent right multiply.  Using this identity the effect of multiplying AB from the right 

and the left is compared  

 

     
*

 C AB BA C AB C
 

Because a vector multiplied by itself, is the product of two parallel vectors, there are no 

rotational components (2
nd

 products) in the result.  The result contains only zero products; 

as such, the result is a scalar matrix. 

 

   
22

0 0

0 0

AxAx AyAy

AxAx AyAy

    
        

    

A A
AA A A A A

A A
 

 

Note, the use of  
2

andA A A are deprecated because they represent a loss of 

information.  The representations  2AA A  allow for full algebraic manipulation 

without loss.  

 

 

Other Vortrix Expressions that result in a scalar matrices are [A/A] and [A\A] which 

result in an identity (or unity) matrix  

 

   
1 0

/ 1 1
0 1

 
   
 

A A  

 

Again, a numeric value in brackets is a shorthand representation of a scalar matrix.  

 

The following notation demonstrates an alternative representation of a vector divide.    

.  

 
[ 1 [

/
1 ] ]

 
A A

A B
B B
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The ambiguous divide operator (the horizontal line separating numerator and 

denominator) itself does not convey whether the divide is left or right; therefore, the 

brackets are retained to express the handedness.  This is called split matrix notation 

because it looks like the product is being separated and commuted (moved).   In 

operations involving Scalar Matrices there is a limited commutative ability which is 

detailed in chapter 4.13.  

 

For the most part, this notation makes it easier to demonstrate certain Vortrix Algebraic 

manipulations as well as allowing a more granular discussion of right and left operations.  

Warning, this notation may incorrectly give the impression that [A/B] is a combination of 

a left multiply and right divide.  Just remember that there is only one operator in a given 

pair of brackets. 

 

This notation is helpful for highlighting the subtlety between reciprocals and equivalent 

operators which covered in the next section.   

 

 

Vortrix operators can have both equivalents and reciprocals.  The equivalent operation 

performs the same function while the reciprocal performs the inverse.  For example, left 

divide can be replaced with an equivalent operation which is implemented with a right 

multiply in conjunction with a scalar divide.  This is contrasted by the reciprocal of left 

divide which is left multiply. 

 

Equivalents are important because they allow division to be replaced with multiplication 

and left operators to be replaced with right operators.  This allows direct comparison of 

operations and allows a single software operator (in this case right multiply was chosen) 

to implement all vector multiplications and divisions operators.  

 

It was originally believed that the reciprocal of left divide was right multiply; however, 

the derivation of the matrix inverse demonstrated this to be wrong.  Consider the inverse 

of the matrix [AB] 

 

 
 

1 1
AB

AB
  

 

The proper equivalent for the reciprocal of [AB] is to solve the following  

 

  
1

1

AB AB  

 

The obvious answer is  
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 
 

2 2
1

BA
AB

A B
 

 

Where the equivalent for the reciprocal [AB] is implemented with [BA] as shown  

 

  2 2

1 [ ]


BA

AB B A
 

 

From the above result, it was determined that the equivalent of a right divide can be 

generated from a left multiply and vice-versa.  These equivalent identities are expressed 

in the following split matrix identities  

 

2

2

1 ]

[

1 [

]





A

A A

A

A A

 

 

For example, given arbitrary vectors A and X, dividing A to the right of X is the 

Equivalent operation to multiplying A to the left and dividing by A
2 

 

 
 

2
/ 

AX
X A

A
 

 

Now that the equivalents of right and left divide are known, the next step is to determine 

the reciprocals of right and left divide.  Because the reciprocal of [AB] is  

 

 
 

1 1
AB

AB
 

 

And because A is on the left side for both the normal and reciprocal, then the reciprocal 

of left multiply is left divide.  The identities for both left and right are show in the 

following identities  

 

1

1

1
([ )

[

1
( ])

]









A
A

A
A

 

 

To give credence to the notion that the reciprocal of right divide is right multiply, 

consider the following expression where X is right divided by A and then right multiplied 

by A.  
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 / ?X A A   

 

Replacing right divide by its equivalent left multiply results in the following expression 

which shows the vector A multiplied against X from opposite directions effectively 

canceling any rotation of X.  The division by the Scalar [AA] cancels any magnitude 

effects.   

 

 
2


AX A

X
A

 

 

Another example begins with the arbitrary expression  

 

[ ]
?

[ ]


AB

CD
 

 

If the numerator were right multiplied by E, then in order to keep the ratio the same, the 

denominator must also be right multiplied by E such that  

 

[ ]
?

[ ]


AB E

CD E
 

 

Right multiply of the denominator is the same as right divide of the numerator. 

 

The reciprocal operations discussed in the previous section are opposing operations using 

the same vector that result in Scalar Matrix of Unity Magnitude.   Therefore, the more 

precise definitions of those reciprocals are Unity Scalar Reciprocals or more simply 

Unity Reciprocals.   

 

Scalar Reciprocals are opposing operations and vectors that result in a scalar matrix 

which is not necessarily unity.   The Scalar Reciprocal of the right multiplication of A is 

the left multiplication by any vector which is parallel to A, antiparallel to A, to include A.  

The Scalar Reciprocal of left divide by A is left multiply by any vector which is parallel 

or antiparallel to A to include A. 

 

Unity Reciprocals are a subset of Scalar Reciprocals.   

 

In the remainder of this text, if the word reciprocal is used without being pre-qualified by 

the word Unity or Scalar, its meaning should first be inferred from context; otherwise, 

Unity is assumed. 
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Reflection occurs when the direction of a vector relative to another vector is negated.  

This is demonstrated in Figure 1 where vector B is reflected about A.  Reflection of B 

about A is implemented in Vortrix Algebra by performing two same side products of A 

against B. For example, B is reflected about A when A is first right multiplied to B to 

form the [BA] matrix and then right multiplied again to form a triple product [BA] A.  

The magnitude of the resultant vector is |B||B||A| and the direction is reflect(B,A) which 

is defined as the direction of B reflected about A.  The following is an abbreviated list of 

the possible ways to implement reflection. In the following definitions reflect(B,A) mean 

the resultant direction is B reflected about A.  The magnitude is shown separately. 

 

2

2

[ \ ] [ / ] ( , )

ˆ ˆ ˆ ˆ[ ] [ ] ( , )

[ ] [ ] ( , )

\ [ \ ] [ / ] / ( , )

reflect

reflect

reflect

reflect

 

 

 

 

A B A A B A B B A

A AB BA A B B A

A AB BA A B A B A

B
A A B B A A B A

A

 

The products formed from Scalar Reciprocals such as [AA] and [A/A] result in scalars 

matrices which are left/right ambiguous and fully commutative.  In certain cases, 

products formed from Scalar Reciprocals can retain commutative ability even when split.  

For example, if B is left multiplied by A, then right multiplied by A, then the scalar 

matrix formed by the reciprocals can be commuted out.  For example [AB]A= [AA]B= 

B[AA]. 

 

Scalar Reciprocals are able to maintain the commutative ability only if they are applied 

sequentially; for example, [AB]A = [AA]B  and [BA]/A= [A/A]B=B.  The ability to 

commute vanishes if not applied sequentially; for example, (C[AB])A != [AA][CB].  The 

following shows a table of identities checked by computer to understand the nature of 

Split Scalar Reciprocals.    

 
1. PASS  [AA][BC]=(A[BA])C 

2. FAIL  [AA][BC]=A([BA]C) 

3. PASS  [AA][BC]=(A[BC])A 

4. PASS  [AA][BC]=A([BC]A) 

5. PASS  [AA][BC]=[BC][AA] 

6. PASS  ([A[B[C[DE])A]=[B[C[DE][AA] 
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7. FAIL  ([B[A[C[DE])A]=[B[C[DE][AA] 

8. FAIL  ([B[C[A[DE])A]=[B[C[DE][AA] 

9. FAIL  ([B[C[D[AE])A]=[B[C[DE][AA] 

According to the above results, as long as [A and A] are applied sequentially, the 

commutative property is retained.  This is expressed as follows  

 

2

2

( / ) \ ( ) [ \ ]

( \ ) ( ) / [ / ]

( \ ) / \ ( / )

( ) ( ) [ ]

expwhere is arbitrary vortrix ression

      

      


   

      



A A A A A A

A A A A A A

A A A A
A

A A A A AA A

 

 

This Split Scalar Reciprocal Commutative Property is used in the next section to explore 

right and left divide. 

 

It was demonstrated that vector multiply has right and left forms; therefore, vector divide 

should also have right and left forms.  The notation for the two forms are shown as 

follows  

 

 

 

/

\

right divide

left divide





A B

A B
 

 

Using Split Matrix notation and the Commutative Property of Split Scalar Reciprocals 

(4.13), the above expression is converted into equivalent multiplies 

 

2

] ] [ ]
[ \ ]

[ ]

 
  

 

B A BA
A B

A A A
 

 

In the above, the denominator is right multiplied by A] which is same as right dividing by 

A.  This closes the matrix in the denominator converting it to a scalar matrix which 

releases B.  Then right multiplying by A completes the reciprocal operation forming [BA] 

in the numerator.  

 

Shown again not using split matrix notation  

 

   2 2

[ ]
[ \ ] [ \ ] /

 
   

 

B BA
A B A B A A A

A A
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In the above, [A\B] is right divided by A and the right multiplied by A which is a 

reciprocal operation.  The right divided by A form a reciprocal operation with the left 

divide by A in [A\B] which results in B divided by the scalar A
2
 which can then be 

commuted out of the way (using ambiguous divide symbol).  Now that B is free, the right 

multiply by A forms the result shown in the above, at right, which is the equivalent of 

[A\B]. 

 

For completeness the Reciprocal operations are performed in the opposite order 

     2 2 2

2

[ \ ]
[ \ ] / \ [ \ ] / \ [ \ ] / [ \ ]

 
    

 

A B
A B A A A A B A A A A A B A A A B

A
 

 

In the above, the right multiply is performed first.  The right multiply by A is replaced by 

its equivalent which is left divide by A and multiply by Scalar A
2
.  The A

2
 is then 

commuted out of the way to reveal that [A\B] is successively divided on the right and the 

left by A which is a reciprocal operation resulting in divide by A
2
.   The A

2
 in the 

numerator cancels the A
2
 in the denominator and the [A\B] matrix is returned. 

The following identities are developed using the same techniques  

 

2

[ [ [ ]
[ / ]

[ ]

 
  
 

A B AB
B A

A A A
 

2

2

2

2 2

[ ]
[ ] /

[ ]
[ / ]

[ ]
\ [ ]

[ ] [ ]
[ \ ]

 

 

 

  

A BA
BA A B

A

AB A
B A A B

A

AB A
A AB B

A

A BA AB A
A A B B

A A

 

   
*

/ \A B B A  

 
 

 
 

2

2

ˆ ˆ/ ( , )

ˆ ˆ\ ( , )

reflect

reflect

   
 

   
 

A AB
AB A A AB B B A

A

AB B
B AB AB B A A B

B

 

 
 

 
 

2

2

\

/





AB C
C AB

C

C AB
AB C

C
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The complex operator, which is symbolized by the bold letter i, is defined as any value, 

that when multiplied by itself results in -1.  Thus  

 
2 1

1

 

 

i

i
 

 

The above result is called an “imaginary” number because it cannot be represented by a 

real number.  It’s called the complex operator because it is used in complex algebra 

which is an algebraic system composed of real and imaginary numbers. 

 

Vortrix Algebra provides the first ever solution (actually 2) for the complex operator that 

is completely based on real numbers.  Because it is no longer complex, it is given the 

more appropriate name: Rotation Operator. 

 

The following two sections derived the two Plane Rotation Operators of Vortrix Algebra 

 

Geometric Algebra claims to have a definition for the complex operator; however, in 

section 4.15.3 it is demonstrated to be erroneous. 

 

 

444...111555...111   TTThhheee   VVVooorrrtttrrriiixxx   PPPlllaaannneee   RRRoootttaaatttiiiooonnn   OOOpppeeerrraaatttooorrr   (((iii)))   

 

The Vortrix Plane Rotation Operator (PRO) is a direct drop-in replacement for the legacy 

complex operator.  The PRO is non-imaginary and is constructed completely from real 

numbers. 

 

Begin by considering that the purpose of the complex operator was to provide a definition 

for the square root of -1.  The value -1 is a scalar, and the only place in Vortrix Algebra 

for scalars is the main diagonal of a matrix; therefore, the value -1 can only exist as a 

scalar matrix as discussed in section 4.2.  Thus the value -1 is really  

 

 
1 0

1
0 1

 
   

 
 

 

The above matrix represents an operator that inverts the direction of a vector (180 degree 

change in direction).  This is identical to multiplying a vector by -1 in LA.  According to 

the previous section, the square root of the above should produce a matrix that only 

changes the direction of a vector by 90 degrees or  
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 
0 1

1
1 0

 
   

 
 

 

This identity is verified by squaring the matrix using standard matrix multiply which 

returns the original [-1].  This the first ever real definition of what used to be called the 

complex operator i. Now, because the value is no longer undefined or imaginary, there is 

no further need for imaginary dimensions and the operator is properly renamed: The 

Plane Rotation Operator or just rotation operator for short.  The symbol of a bold faced i 

is retained to represent the rotation operator (electrical engineers will still use the symbol 

j so as not to confuse the operator with current) .    

 

 
0 1

1
1 0

 
    

 
i  

 

Consequently 

 

 
2

2
0 1 0 1 1 0

1 [ 1]
1 0 1 0 0 1

       
          

     
i  

 

 

This operator simply rotates vectors through 90 degrees in the XY plane and can be 

developed by multiplying a unit direction vector in x with the unit vector in y to form a 

+90 degrees rotation matrix as shown  

 

 
0 1

ˆ ˆ
1 0

 
   

 
i xy  

 

Because this definition is in terms of orthogonal unit vectors, we can reduce the 

definition to just the cross product  

 

 
0 1

ˆ ˆ
1 0

 
    

 
i x y  

 

 

Again, to prove that it is a root of -1, it is squared to show that the result is -1. 

 

 
22

0 1 0 1 1 0
ˆ ˆ [ 1]

1 0 1 0 0 1

       
          

     
i x y  
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444...111555...222   TTThhheee   CCCooonnnjjjuuugggaaattteee   PPPlllaaannneee   RRRoootttaaatttiiiooonnn   OOOpppeeerrraaatttooorrr   (((---iii)))   

The square root of any number should have two solutions (roots); therefore, the square 

root of -1 should also have two roots.  Just as the sqrt(4) has both -2 and  +2 as roots, the 

sqrt(-1) should have i and –i as roots.  This is shown as follows  

 

 *
0 1

ˆ ˆ
1 0

 
      

 
i i y x  

 

And is shown to be a root of -1 by squaring it to arrive at -1 

 

   
2 2 0 1 0 1 1 0

ˆ ˆ [ 1]
1 0 1 0 0 1

     
           

       
i y x  

 

The reason why it is called the conjugate plane rotation operator is that it results from a 

vector transpose which is a matrix conjugate.  A matrix conjugate is the negation of the 

cross product portion of a matrix.  This is why it is correct to use either a negative sign or 

a matrix conjugate operator. 

 

The primary different between i and –i is the direction of rotation. 

 

444...111555...333   TTThhheee   GGGeeeooommmeeetttrrriiiccc   AAAlllgggeeebbbrrraaa   CCCooommmpppllleeexxx   OOOpppeeerrraaatttooorrr   FFFrrraaauuuddd   

 

Geometric algebra claims to have developed the proper meaning of the complex operator 

in their definition of what they call “2D Unit Pseudoscalar.”   They define the complex 

operator i as follows  

 

ˆ ˆ i x y  

 

Where the symbols in the exterior product are the unit direction vector in the X direction 

and the unit direction vector in Y direction respectively.   The two direction vectors form 

an orthonormal basis for a 2D system.  To prove that this is the complex operator, it must 

be squared and the result must equal -1. 

   

  2 ˆ ˆ ˆ ˆ  i x y x y  

 

The first question is: what operator lies between the exterior products?  The ONLY 

possible operator is a dot operator otherwise transposing the products would invert the 

sign of the result and i
2
 would ambiguously result in both 1 and -1.  So placing in the dot 

operator results in: 

 

   2 ˆ ˆ ˆ ˆ   i x y x y  
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Since the exterior products are parallel constructs of vectors, then any sane logical person 

would identify that the dot product of identical vector constructs can only ever be 1; 

therefore, this derivation is totally invalid and proves that their definition of the 

Pseudoscalar is indeed false.   

 

A sane engineer would test the above by substituting (1, 0) for x and (0, 1) for y and then 

numerically evaluate to see if negative 1 is the result.  That engineer would then wonder 

why the authors GA didn’t do that in the first place.  Soon that engineer would realize 

that the exterior product is not a real product and it is not possible to directly evaluate the 

above expression.  If that engineer decided to substitute the legacy cross product for the 

exterior product then the result would be 1.  The same answer the sane person reasoned 

out.  

 

In the interest of being thorough, the derivation is continued.  

 

The next part of their proof is to discard the parenthesis and operators for no apparent 

reason to arrive at: 

 
2 ˆ ˆ ˆ ˆi xyxy  (Note: Vortrix algebra returns a [+1] for this)  

 

By discarding the operators they are implying that both operators of the Geometric 

Products are in play; if this is the case, then why bother defining i in terms of the exterior 

product?  By dropping the parenthesis, they imply that the order of operation is not 

relevant; however, this is erroneous since changing the order of the products of  

 

   2 ˆ ˆ ˆ ˆ   i x y x y    to    ˆ ˆ ˆ ˆ 0   x y x y  results in zero. 

 

At this point, there is sufficient error to end this derivation.  The only reason for 

continuing is that the next steps are very entertaining.  Continuing from:  

 
2 ˆ ˆ ˆ ˆi xyxy  

 

Remember, the above has to equal -1 for their definition to be correct.  To achieve this 

end, they swap the inner two products which they claim negates the result.  Then they 

compensate by applying the negative sign. 

 
2 ˆ ˆ ˆ ˆ i xxyy  

 

The first way to expose the error is to replace the parentheses and operators  

 

   ˆ ˆ ˆ ˆ 0    x x y y  
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Zero is certainly not -1; furthermore, the swap of the center items was around a dot 

operator which does not incur a sign inversion.   

 

For the sake of fairness we correct their definition of the complex operator (Pseudoscalar) 

to better support what they are trying to do.  By discarding the operator ‘^’ from the 

definition, they are no longer limiting the definition to the specific use of the exterior 

product.  This corrected definition becomes   

 

 ˆ ˆi xy  

 

Then the proof becomes  

 

  2 ˆ ˆ ˆ ˆi xy xy  

 

Now we are no longer limited by a definition as to which operator must be used.  

Furthermore, by discarding the parentheses, we are no longer bound to a specific order of 

operation.  This is more consistent with the steps they have taken in the derivation.  

Returning to their previous step  

 
2 ˆ ˆ ˆ ˆ i xxyy  

 

One possible order of multiplication is to multiply the center items first; this could only 

be an exterior product because the dot product would result in zero.  Resolving the center 

product allows us to substitute the definition of i as follows: 

 
2 ˆ ˆ ˆ ˆ ˆ ˆ( ^ ) ( )   i x x y y x i y  

 

Because the i operator causes a plus 90 degree rotation to the y, then it is converted into a 

–x and the result is   

 
2 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ^ ) ( ) ( ) 1       i x x y y x i y x x  

 

This contradicts the desired result of -1 and demonstrates that order of operation is 

critical in vector products. 

  

Let’s try again with a different order of operation by multiplying the outer pairs first  

 
2 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )( ) ( ) ( ) (1)(1) 1          i xx yy x x y y  

 

1 i  

 

At best, they have simply rediscovered that the imaginary complex operator ‘i’ is the 

square root of -1.  At worst, this is a fraud that uses sleight of hand trickery and 
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misdirection to cause a symmetrical product    ˆ ˆ ˆ ˆ x y x y  appear as an asymmetrical 

product (-1)(1) to obtain a negative result.  The motive is to claim (albeit falsely) that GA 

is isomorphic to complex algebra so that they can usurp the capabilities of complex 

algebra.  Without the capabilities of complex algebra, GA is pointless gibberish. 

 

The proper definition of the complex operator is a construct of real values, that when 

multiplied by itself, results in negative 1. Sorry but (-1)(1) does not count because it is 

not symmetrical and ˆ ˆ i x y  is invalid because you can’t substitute real numeric values 

for x and y and obtain a result that satisfies the requirement.  To this date there are only 

three viable definitions, one is imaginary and two are real.  

 

The legacy definition 

 

1 i   This is imaginary because it can’t be expressed with real numbers  

 

And now the two Vortrix definitions which are no longer complex 

 

0 1

1 0

 
  
 

i   The Vortrix Plane Rotation Operator  

*
0 1

1 0

 
    

 
i i  The Vortrix Conjugate Plane Rotation Operator  

 

The legacy definition is undefined imaginary voodoo that can’t be rationalized in an 

arithmetic processor (ALU or Calculator), the Vortrix definitions are standard ordinary 

matrixes well suited for any numerical processor that can add, subtract, multiply and 

divide. 

 

Vortrix Algebra does not claim isomorphism with complex algebra; rather, Vortrix 

algebra claims superiority because it eliminates the imaginary nonsense and replaces it 

with two real operators called the Plane Rotation Operator and the Conjugate Plane 

Rotation Operator.  

 

With this, Vortrix Algebra supersedes all other multidimensional algebras to include 

complex numbers and quaternions. 

 

This section demonstrates the properties of the 2D Vortrix Matrix.  Given a 2D [AB] 

matrix 

 

 
AxBx AyBy AyBx AxBy

AxBy AyBx AxBx AyBy

  
  

  
AB  
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It is observed that the elements along the diagonal are all the same, and the elements off 

the main diagonal are negatives of each other.  This means that the 2D matrix can be 

represented by the elements in the first column allowing a matrix to be stored in a 

compact form for computational efficiency.  Assigning M0 to represent AxBx+AyBy and 

M1 to represent AxBy-AyBx, the Matrix can be stored as:  

 

 
0

1

M AxBx AyBy

M AxBy AyBx

  
  

  
AB  

 

The Matrix is then be reconstituted using the following  

 

 
0 1

1 0

M M

M M

 
  
 

AB  

 

444...111666...111   SSScccaaalllaaarrr   MMMaaagggnnniiitttuuudddeee   ooofff   MMMaaatttrrriiixxx      

 

The magnitude of the matrix is the RSS (root sum square) of the elements of the first 

column. 

 

  
1

2

0

nD

n

Mn




 AB  

 

444...111666...222   RRRoootttaaatttiiiooonnn   AAAnnngggllleee   

The rotation angle of the matrix is the 2D Arctan of the first column (atan2) 

 

 arctan 2 1, 0AB M M  

 

444...111666...333   PPPooowwweeerrr   ooofff   VVVooorrrtttrrriiixxx      

 

 

The magnitude and rotation angle represent how the matrix affects other things that are 

multiplied against it.   For example, a vector right-multiplied to this matrix will be rotated 

counter-clockwise by the rotation angle and its magnitude increase by the scalar 

magnitude.  Another matrix multiplied to this will result in a new matrix with the product 

of the magnitudes and the sum of the rotation angles.  Therefore, the square of the matrix 

results in a square of the magnitude and a doubling of the rotation angle.  The logical 

progression takes on the following: 
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 

 

 

 

 

2 2

1/2 1/2

0

(2 )

( )

( / 2)

[1]

( )

n n

n n

AB AB

AB nAB

AB AB

AB nAB
 









 

AB

AB

AB

AB

AB

 

 

The last identity shows a reversal of direction for negative exponents which was 

demonstrated earlier when the matrix reciprocal was derived  

 

  
1

1

AB AB  

 

Note: when multiplying matrices, the magnitudes multiply and the rotation angles add. 

 

Finally, if  

 

 
0 1 0

[1]
0 1

 
   

 
AB  

 

Then logically  

 

 
0 1 0

[1]
0 1

 
    

 
A B  

 
0 0 0

[0]
0 0

 
    

 
A B  

The above are important when exponents of Vortrix Matrices are considered. 

444...111666...444   TTTrrriiigggooonnnooommmeeetttrrriiiccc   PPPrrrooopppeeerrrtttiiieeesss   (((rrreeevvviiissseeeddd   vvv111...333)))   

 

The terms in the matrix produced by a Vortrix Vector Product can be defined in terms of 

sine and cosine: 

 

cos( ) sin( )
[ ]

sin( ) cos( )

angleAB angleAB

angleAB angleAB

 
  
 

A B A B
AB

A B A B
 

 

And likewise for divide  

 

   
   

/ cos( ) / sin( )
[ / ]

/ sin( ) / cos( )

angleAB angleAB

angleAB angleAB

 
  
  

B A B A
B A

B A B A
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Where angleAB is the direction of B – direction if A. 

 

Note: These results and properties are for the presently selected rule set (Sign 

convention) . 

 

The Dot product is then  

 

cos( ) 0
[ ]

0 cos( )

angleAB

angleAB

 
   

 

A B
A B

A B
 

 

And the Cross product  

 

0 sin( )
[ ]

sin( ) 0

angleAB

angleAB

 
   

 

A B
A B

A B
 

 

The above Cross and Dot products are defined only for multiplication.  The Dot product 

is essentially the diagonal components resulting from a vector multiply and the Cross 

product is comprised of the off-diagonal elements (cross components).  By defining 

matrix functions for dot and cross we achieve the same effect as follows. 

 

 

cos( ) 0
[ ] [ ]. ()

0 cos( )

angleAB
dot

angleAB

 
    

 

A B
A B AB

A B
 

 

 

0 sin( )
[ ] [ ]. ()

sin( ) 0

angleAB
cross

angleAB

 
    

 

A B
A B AB

A B
 

 

 

The new functions can also be applied to division (or any other matrix result) to yield the 

division dot product and the division cross product as follows  

 

 
 

/ cos( ) 0
[ / ]. ()

0 / cos( )

angleAB
dot

angleAB

 
  
  

B A
B A

B A
 

 

 
 

0 / sin( )
[ / ]. ()

/ sin( ) 0

angleAB
cross

angleAB

 
  
  

B A
B A

B A
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The above Matrix functions are defined in the software and are the preferred method for 

separating matrices into dot and cross components.  For brevity in documents the 

following compound operators are used  

 

[ / ]. () [ / ]dot  B A B A  

 

[ / ]. () [ / ]cross  B A B A  

 

 

 

 

444...111666...555   VVVooorrrtttrrriiixxx   TTTrrriiigggooonnnooommmeeetttrrriiiccc   FFFuuunnnccctttiiiooonnnsss   (((NNNeeewww   iiinnn   VVV111...333)))   

This section defines a useful set of trigonometric functions based on the Properties 

explored in the previous section.    

 

The first trigonometric function is sine.  Sine is defined as the cross components of a 

vector divide.  For the C# software that accompanies this document one would use either 

sin(B,A) or (B/A).cross(). 

 

0 ( / )sin( )
sin( , ) [ / ] [ / ]. ()

( / )sin( ) 0

angleAB
cross

angleAB

 
     

 

B A
B A B A B A

B A
 

 

The cosine is the dot components of a vector divide 

( / )cos( ) 0
cos( , ) [ / ] [ / ]. ()

0 ( / )cos( )

angleAB
dot

angleAB

 
     

 

B A
B A B A B A

B A
 

And finally, Tangent is sine divided by cosine. 

 

0 tan( )[ / ] [ ]
tan( , )

tan( ) 0[ / ] [ ]

angleAB

angleAB

  
    

   

B A A B
B A

B A A B
 

 

These trigonometric functions are similar to legacy trigonometric function in the manner 

that the lengths of adjacent and opposite are a function of the length of the hypotenuse 

(B) (see Figure 3); however, these functions are superior to legacy trigonometric function 

because the result is an actual vector which contains the proper directions of the adjacent, 

opposite and tangent. 

 

The strangeness is that the adjacent, opposite, hypotenuse (B), and tangents are found by 

right multiplying the trig matrix by the A vector.  This is demonstrated in the following 

equations which are highlighted in   Figure 3.  
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opposite sin( , )

adjacent cos( , )

hypotenuse= [sin( , ) cos( , )] [ / ]

tangent tan( , )





  



B A A

B A A

B B A B A A B A A

B A A

 

 
Figure 3: Sine, Cosine and tangent results from right multiply of A 

 

 

By left multiplying the trig matrix by A results in reflected Sin, Hypotenuse and Tangent 

function as demonstrated by the following equations and Figure 4. 

 

opposite' sin( , )

adjacent' cos( , )

hypotenuse'= reflect( , ) [sin( , ) cos( , )] [ / ]

tangent' tan( , )





  



A B A

A B A

B B A A B A B A A A B A

A B A
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Figure 4: Reflected Trig results 

 

Because left multiplication causes the Hypotenuse’ to appear as a reflection of B about A, 

these trigonometric results are called the reflected results.  The reflected results are 

abbreviated using an apostrophe which results in Tangent’, Opposite’, Hypotenuse’, etc. 

 

For completeness the results of multiplying the trig matrices by vector B are 

demonstrated next.  The following equations and Figure 5 demonstrate the results of right 

multiplying the trig matrices by B.  It should be noted that the magnitude of vector C is 

(B/A)B which means that if B is 50% of the size of A (close to what is shown in the 

diagrams) then C will be 50% the size of B, etc. 

 

 

opposite sin( , )

adjacent cos( , )

hypotenuse= [sin( , ) cos( , )] [ / ]

tangent tan( , )





  



B A B

B A B

C B A B A B B A B

B A B
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Figure 5: Trig Right Multiplied B 

 

And finally, the last case is B left multiplied to the trig matrices as demonstrated by the 

following equations and Figure 6. 

 

opposite' sin( , )

adjacent' cos( , )

hypotenuse'= [sin( , ) cos( , )] [ / ]

tangent' tan( , )





  



B B A

B B A

C B B A B A B B A

B B A

 

 

 

 
Figure 6: Trig Left Multiplied by B 

 

This section demonstrates the various trigonometric results that are obtained from the 

various ways that multiplication can be performed.  From these basic results the 

remaining trigonometric functions can be derived such as Cotangent , Secant, Cosecant, 

Exsecant, Excosecant, Versine, and Coversine. 

 

This section further demonstrates the necessity of right and left operators.  This gives 

validity to the notion that a proper vector product can neither be commutative or 

associative otherwise ambiguous directions would results.   
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Euler’s Equation is  

 

cos( ) sin( )e    i
i  

 

Substituting the Vortrix replacement for the complex operator yields  

 

 

0 1 0 sin( )
cos( ) sin( ) cos( )

1 0 sin( ) 0
e 


  



    
      

   

i
 

 

Since the cosine is a scalar and scalars can only exist as a scalar matrix then  

 

cos( ) sin( )

sin( ) cos( )
e 

 

 

 
  
 

i
 

 

And the conjugate is  

 

cos( ) sin( )

sin( ) cos( )
e 

 

 

  
  

 

i
 

 

 

The following derivation is applicable to either case above.  Using the first case, 

multiplying by |A||B| and replacing θ with angleAB yields  

 

 

( )
cos( ) sin( )

sin( ) cos( )

angleAB
angleAB angleAB

e
angleAB angleAB

 
  
 

i
A B A B

A B
A B A B

 

 
( )[ ] angleABe i

AB A B  

 

Vortrix Algebra is superior to complex numbers because its matrix structure eliminates 

the need for imaginary constructs.  All prior mathematical constructs that used imaginary 

constructs can now be replaced with real Vortrix constructs. 

 

Continuing this train of thought, A and B are replaced with direction vectors  

 

( )
cos( ) sin( )

ˆ ˆ[ ]
sin( ) cos( )

angleAB
angleAB angleAB

e
angleAB angleAB

 
   

 

i
AB  
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0 sin( )
ˆ ˆˆ ˆ[ ] [sin( )] sin( )

sin( ) 0

angleAB
angleAB

angleAB

 
     

 
A B AB i  

 

cos( ) 0
ˆ ˆˆ ˆ[ ] [cos( )] cos( )

0 cos( )

angleAB
angleAB

angleAB

 
     

 
A B AB  

 

These results are identical to the forms derived in 4.16.4 

 

<UNFINISHED> 

 

Consider that  

| || | cos( ) | || | sin( )
[ ]

| || | sin( ) | || | cos( )

angleAB angleAB

angleAB angleAB

 
  
 

A B A B
AB

A B A B
 

 

And  

 

( )
cos( ) sin( )

sin( ) cos( )

angleAB
angleAB angleAB

e
angleAB angleAB

 
  
 

i
 

 

Then  

 

( )
| || | cos( ) | || | sin( )

| || |
| || | sin( ) | || | cos( )

angleAB
angleAB angleAB

e
angleAB angleAB

 
  
 

i
A B A B

A B
A B A B

 

 

 

   ( )ln | || | lnangleABe i
A B AB  

 

 ln(| |) ln(| |) ( ) lnangleAB  A B i AB  

<UNFINISHED> 

 

The infinite series expansion for the natural exponent is typically shown in its simplified 

form as follows. 

 
1 2 3 4 5

1 ...
1! 2! 3! 4! 5!

x x x x x x
e        
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The more complete representation is  

 
0 1 2 3 4 5

...
0! 1! 2! 3! 4! 5!

x x x x x x x
e        

 

 

Replacing x with [AB] 

 
0 1 2 3 4 5

[ ] [ ] [ ] [ ] [ ] [ ] [ ]
...

0! 1! 2! 3! 4! 5!
e      AB AB AB AB AB AB AB

 

 

For the sake of decomposing what this means, separate the magnitudes from the vectors  

 

           
1 2 3 40 1 2 3 4

ˆ ˆ[ ]
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ] [ ]

...
0! 1! 2! 3! 4!

e     
A B AB A B AB A B AB A B AB A B AB A B AB

 

Considering a simplified case where A and B are unit direction vectors  

 

 
0 1 2 3 4 5

ˆ ˆ[ ]
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ] [ ] [ ]

...
0! 1! 2! 3! 4! 5!

e      AB AB AB AB AB AB AB
 

 

<UNFINISHED> 

 

The identities in the following section were tested exhaustively using a computer.  Thus 

the identities are sound; however, there has been insufficient time to understand the full 

nature of the 3D system to understand exactly why it all works.   

 

Some preliminary notions of the nature of the 3D system follow: 

 

Since the matrix has the capability to rotate a vector multiplied against it, the 

characteristics of the components of rotation are as follows: 

 

 arctan2 1, 0XY M M  = Angle by which X components are rotated to Y 

 arctan2 2, 0XZ M M   = Angle by which X components are rotated to Z 

 arctan2 3, 0YZ M M  = Angle by which Y components are rotated to Z 

 

The above are similar to Euler Angles, the exact relationship is ongoing work due to the 

fact that there are also rotations (or inflations) into volume space.  The angles by which 

the dimensions are inflated into volume are as follows  
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 arctan2 3, 0XV M M = Angle by which X is rotated to V 

 arctan2 2, 0YV M M    = Angle by which Y is rotated to V 

 arctan2 1, 0ZV M M  = Angle by which Z is rotated to V 

 

<UNFINISHED> 

 

5 Applications  

Given three vectors A, B and C such that  

 

 C A B  

 

Square both sides using Vortrix Algebra  
2 2( ) C A B  

 
2 ( )( )  C A B A B  

 
2 2 2[ ] [ ]   C A AB BA B  

 
2 2 2[ ] [ ] [ ] [ ]         C A A B A B B A B A B  

 

The dot products add, the cross products cancel (BxA = -AxB) 

 
2 2 22[ ]   C A A B B  

 

If A and B are perpendicular, then the dot product is zero and  

 
2 2 2 C A B  

 

 

 

Given the product of two time varying vectors [AB] we should like to calculate the time 

derivative.  Using the standard limit definition to determine the derivative, begin with  
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 
  

0
[ ] lim

t

t td

dt t 

     
 
 
 

A A B B AB
AB  

 

Multiplying through  

 

 
2

0

[ ] [ ] [ ] [ ] [ ]
[ ] lim

t

d t t t

dt t 

       
  

 

AB AB AB AB AB
AB  

 

Reducing  

 

   
0

[ ] lim [ ] [ ] [ ]
t

d
t

dt  
   AB AB AB AB  

 

Taking the limit  

 

 [ ] [ ] [ ]
d

dt
 AB AB AB  

 

 

In this case, the Vortrix Calculus Chain rule follows the arithmetic calculus chain rule 

 

 

Vortrix Algebra was developed to support research in electromagnetic physics.  It has 

long been surmised by this author that electromagnetic fields at the electronic level 

(external to protons, electrons, and neutrons) seem to be the synthesis of a more 

fundamental field phenomenon called the Pretonic fields.  This is similar to the notion 

that atoms are synthesized from more fundamental particles such as protons, electron, and 

neutrons; which are themselves synthesized by ever more fundamental particles.  

Therefore; it is logical that the field effects seen at the electronic level (outside electrons, 

protons and neutrons) are synthesized by more fundamental particles (called Pretons) 

whose Pretonic Field emissions, affected by Preton motion, synthesis the fields 

(including gravity) seen at the electronic level. 

 

The purpose of this derivation is to show how a very simple field phenomenon can be 

“spun” into multiple effects that match experimentally with fields at the electronic level.  

Consider a simple particle called a Preton which emits a Pretonic Vector Ampere field I.  

The subscript S denotes that this is the source of the field that is being modeled.  The 

preton has a charge of Qs coulomb charges and a vector velocity of Vs.   
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  ˆ[ / ]S S SQ I V r r  

 

The vector r is from the position of the preton to a position in space were the field is to be 

evaluated. 

 

The vector ampere field does not directly couple to other pretons; it is the time derivative 

of the vector ampere field which couples to other pretons.  This is shown in the next 

equation 

 

  ˆ[ / ]T M S T S

d
K Q Q

dt
 F V r r  

 

The subscript T refers to the “Target” preton which is the particle reacting to the field 

emitted by the source.  Ft is the vector force acting on the target preton which has a 

charge of Qt.  Km is the magnetic constant which 1e-7 and the vector r is the vector from 

the source to the target; found by subtracting the vector position of the source from the 

vector position of the target. 

 

T S r P P  

 

The derivative of the expression within the parenthesis requires a chain rule.   Plugging 

into the standard limit expression for derivatives  

 

 
   

0

/ /
[ / ] lim

S S S

S
t

t td

dt t 

     
 
 
 

V V r r V r
V r  

 

Right multiplying top and bottom by  t r r  yields 

 

 
    

 0

/
[ / ] lim

]

S S S

S
t

t td

dt t t 

     
 
   
 

V V V r r r
V r

r r
 

 

Reducing  

 

 
  

20

/
[ / ] lim

] ]

S S S S

S
t

t td

dt t t 

     
      

V V V V r r
V r

r r
 

 

Further Reducing  

 

 
 

0

/
[ / ] lim

] ]

S S

S
t

d

dt t 

 
     

V V r r
V r

r r
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Taking limit  

 

 
 /

[ / ]
]

S S

S

d

dt




V V r r
V r

r
 

 

   [ / ] / ( / ) /S S S

d

dt
   V r V r V r r r  

 

Substituting  

 

T S r V V  

 

And  

 

S SV a  

 

Yields  

 

     [ / ] / ( / ( )) /S S S T S

d

dt
  V r a r V r V V r  

 

Substitute back into main expression  

 

    ˆ( / ( / ( )) / )T M S T S S T SK Q Q   F a r V r V V r r  

 

Reducing  

 

 / ( )
( )

S T SS
T M S TK Q Q


  

V r V Va
F

r r
 

 

 
2

ˆ ( )
( )

S T SS
T M S TK Q Q


  

rV V Va
F

r r
 

 

 
2

ˆ ( )S T SS
T M S TK Q Q

 
   
 
 

rV V Va
F

r r
 

 

The first term in the parentheses is identical to New Induction which was discovered by 

this author over 20 years ago from experimental means.  New Induction obtains identical 

answers to Faradays Law for mutual inductance experiments and is able to provide 

correct answers for self-inductance and open loop inductance (Dipole) experiments from 

which Faraday’s Law provides no answer [Distinti 1] 
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The second term inside the parentheses is the candidate to supersede New Magnetism.  

New Magnetism is an amalgam derived from classical magnetic field models plus the 

addition of a term to account for a simple two wire experiment that legacy EM theory 

missed.  As of this writing, limited experimental testing has produced no divergence; 

however, much more testing is needed.  

 

The only legacy EM field effect not seen in the above is the Coulomb field.  It is a simple 

matter to show the synthesis of the Coulomb field from the Preton Vector Ampere Field 

from a system of two or more Pretons.  This derivation is not shown in this paper. 
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Appendix B. Software Supplement  
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